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Abstract—In a new approach towards deeper, higher order ‘bucky bowls’, two step syntheses of novel polycyclic aromatic
hydrocarbons, C48H24 and C54H24, having 13 and 16 rings, respectively, from readily available precursors and involving threefold
palladium mediated intramolecular Heck coupling as the pivotal step is described. © 2002 Published by Elsevier Science Ltd.

Ever since its discovery in the soot generated through
arcing of graphite, the architecturally beautiful, high
symmetry C60 1 (‘bucky ball’) has caught the attention
of synthetic chemists and its acquisition through ratio-
nal or classical synthetic design has been a formidable
challenge.1,2 It is rather ironical that graphite vaporiza-
tion leads only to cyclic cages and many spherical, high
symmetry intermediates, ‘bucky bowls’, that must have
be involved in the evolution of flat graphite to caged
fullerenes have never been encountered. However,
‘bucky bowls’ which can be generated by ripping open
the C60 cage along different symmetry pathways with
appropriate attachment of hydrogen atoms constitutes
an interesting family of hydrocarbons and can be
expected to exhibit surface selective chemistry. These
‘bucky bowls’ can only be accessed through synthesis
and their acquisition has been recognized as an impor-
tant stepping stone in the direction of synthesis of C60

itself.2 In the past decade, synthesis of several ‘bucky
bowls’ such as C20-corannulene 2,3 C30-semifullerene 3
(C2v-symmetry),4 C30-hemifullerene 4 (C3-symmetry),5

C32-acenaphthoindacenopicene 56 and C36-circum-
trindene 67 has been accomplished through the efforts
of research groups around the world. We too have been
interested in the area3f,4c,5b,8 and have conceptualized
novel approaches to higher C60 fullerene fragments and
deeper ‘bowls’, C48H12, 7 and C54H12, 8. In this context,
two C3-symmetric aromatic hydrocarbons, the trideca-
cyclic, C48H24, 9 and hexadecacyclic, C54H24, 10 were

identified as the precursors of 7 and 8, respectively
(Scheme 1). The expectation was that under FVP condi-
tions 9 and 10 could be ‘stiched up’ through sixfold
cyclization (see dotted lines in 9 and 10), a process that
has proved singularly effective, though not always very
efficient, in the synthesis of several ‘bucky bowls’ and
very recently of C60-fullerene.1–7 Herein, we report an
exceptionally short (two step) approach to the key
precursors 9 and 10 from readily available starting
materials.

For the synthesis of the C3-symmetric, C48H24, poly-
cyclic aromatic hydrocarbon 9, hexabromobenzene
derivative 11 of the same symmetry was employed as* Corresponding author. E-mail: gm@orgchem.iisc.ernet.in
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Scheme 1.

Scheme 2. Reagents and conditions : (a) nBuLi, THF, 70%; (b) Pd(OAc)2, BnMe3NBr, K2CO3, DMF, 140°C, 2 days, 22%.

the key starting material. Precursor 11 is readily obtain-
able from the commercially available mesitylene (1,3,5-
trimethylbenzene) in two high yielding steps involving
sequential nuclear bromination (Fe, Br2) and benzylic
bromination (Br2, h�) as reported recently.9 Threefold
displacement of the bromomethyl groups in 11 by the
fluorenyl anion 12 was smooth and put in place all the
48-carbons to deliver 13 in good yield.10 Reaction of 13
with palladium(II) acetate in the presence of
BnMe3NBr in DMF solvent at elevated temperature
resulted in threefold intramolecular Heck coupling to

deliver 9 which precipitated out of the reaction (Scheme
2).10 The structure of this tridecacyclic product and its
expected C3-symmetry was revealed through detailed
analysis of its 1H NMR data, particularly the 1H–1H
COSY spectrum, with the presence of two highly
deshielded protons HA (� 9.61, s, 3H) and HB (� 9.05,
d, J=8.0 Hz, 3H) in the fjord region.

The synthesis of the hexadecacyclic, C3-symmetric,
C54H24, 10 also emanated from the hexabromo precur-
sor 11. Triple displacement on 11 by the lithium anion,
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Scheme 3. Reagents and conditions : (a) nBuLi, THF, −78°C, 60%; (b) Pd(OAc)2, BnMe3NBr, K2CO3, DMF, 140°C, 2 days, 11%.

derived from the commercially available 4H-cyclopen-
ta[def ]phenanthrene 14, furnished 15 (Scheme 3).10

With the acquisition of all the requisite 54-carbon
atoms in a single step, 15 was also subjected to three-
fold Pd(II) mediated intramolecular Heck coupling as
described above for 13 to yield 10 as a highly insoluble
material that precipitated out from the reaction mixture
(Scheme 3).10 In view of its insolubility, the 1H NMR
and 1H–1H COSY spectra of 10 could only be recorded
in 1,1,2,2-tetrachloroethane-d2 at 127°C. The exception-
ally low field signals were ascribed to the fjord region
protons HA (� 10.04, s, 3H) and HB (� 9.28, d, J=8.8
Hz, 3H).

We have outlined an exceptionally short (two-step)
approach to polycyclic aromatic hydrocarbons C48H24

and C54H24 having 13 and 16 rings, respectively, from
readily available precursors. The energy-minimized
(AM1 level) structures of both 9 and 10 exhibit interest-
ing propellor shaped topology. Efforts are underway to
induce cyclization in 9 and 10 under FVP conditions.
The general synthetic approach outlined here is being
extended to assemble C60H30, the penultimate precursor
of C60.
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